Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body

نویسندگان

  • Esteban A. Terzo
  • Shawn M. Lyons
  • John S. Poulton
  • Brenda R. S. Temple
  • William F. Marzluff
  • Robert J. Duronio
چکیده

Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila histone locus bodies form by hierarchical recruitment of components

Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaste...

متن کامل

Novel patterns of homeotic protein accumulation in the head of the Drosophila embryo.

Antibodies that specifically recognize proteins encoded by the homeotic genes: Sex combs reduced, Deformed, labial and proboscipedia, were used to follow the distribution of these gene products during embryogenesis. The position of engrailed-expressing cells was used as a reference and staining conditions were established that could distinguish, among cells expressing engrailed, one of the home...

متن کامل

Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc).

Polycomb group (PcG) proteins play an important role in developmental and epigenetic regulation of gene expression in fruit fly (Drosophila melanogaster) and mammals. Recent evidence has shown that Arabidopsis homologs of PcG proteins are also important for the regulation of plant development. The objective of this study was to characterize the PcG homologs in maize (Zea mays). The 11 cloned Pc...

متن کامل

Needs and targets for the multi sex combs gene product in Drosophila melanogaster.

We have analyzed the requirements for the multi sex combs (mxc) gene during development to gain further insight into the mechanisms and developmental processes that depend on the important trans-regulators forming the Polycomb group (PcG) in Drosophila melanogaster. mxc is allelic with the tumor suppressor locus lethal (1) malignant blood neoplasm (l(1)mbn). We show that the mxc product is dram...

متن کامل

A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster.

We have undertaken a developmental genetic analysis of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster by examining embryonic and adult phenotypes of mutations affecting Scr gene function. Molecular mapping of Scr breakpoint lesions has defined a segment of greater than 70 kb of DNA necessary for proper Scr gene function. This region is split by the fushi tarazu (ftz) gene,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015